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the corresponding transition (1Ai8 —» 1T]8) of the A isomer 
( - )D - [Co(bpy) 3 ] 3 + . 
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Reductive Coupling of Carbonyl or Imino Functional 
Groups by Dicarbonylbis(cyclopentadienyl)titanium(II): 
Model Reactions for Carbon Dioxide Dimerization 
and a Novel Metallacycle Formation 

Sir: 

A new perspective on the utilization of transition metals in 
organic synthesis is represented by the reductive coupling of 
unsaturated functional groups other than C = C and C = C 
(eq 1) (where L„M = low-valent transition metal complex 
undergoing oxidative addition reactions; X = O, NR). 

LnM + 2 X = C — L„M Cl) 

A 

A wide range of electron-withdrawing substituents, R, is 
capable of affecting the necessary activation of the C = X bond 
to cause 7r coordination to the metal.2 Reactions of these 
complexes with the same or other unsaturated substrates yield 
five-membered metallacycles2 (eq 2). All of them have been 

^ R ^ X 
LnM - X = C ^ • LnM I 1 

R / X 
R R ,R 

L M , 
C - X 

/ \ 
R R 

B 

found, however, to have structure B rather than structure A.3 

Reaction 1 exemplifies an unprecedented process promoted 
by transition metals producing a C—C single bond. Moreover, 
should this reductive coupling by realized with CO2, this could 
produce the precursor of oxalic or glyoxylic acid. We have 
found that, while cp2Ti(CO)2 (I, cp = r?5-CsHs) causes the 
disproportionation of CO24 and PhNCO,5 it promotes the re­
ductive coupling of C02-like molecules such as diethyl keto-
malonate, DEKM, or Ar,./V/-di-/>-tolylcarbodiimide, p-TCD. 
Both can be considered as CO2 equivalents,6 since they 
maintain one of the main characteristics of CO2, the C = O 
activated function or the cumulene structure. I reacts with 
DEKM in benzene producing red-maroon crystals of III7 (eq 
3). Analytical and NMR data, along with a preliminary X-ray 

m c , 0 - c^ 
x C 0 2 E t / 1 ^ C O Et 

Cp2T1(CO) +2O = C » cpT, I ' „ , 
CO2Et - 2 C 0 N

0 _ c > u i " 

^CO2Et 
( l ) (II) (Ml) 

DEKM 

op= , J _ C | ) H , 

analysis, are consistent with the structure reported for III.7 The 
final metallacycle could be described as resulting from the 
reductive coupling of the ketonic function promoted by titan-
ium(II). This result is very reminiscent of the "classic" bi-
molecular reduction of acetone to pinacol accomplished by 
metallic magnesium.8 The titanium-induced reductive coupling 
of carbonyls to olefins was supposed to involve a key interme­
diate like III, which precedes the deoxygenation step forming 
olefins.9 It is rather difficult to justify the difference in the 
metallacycle formation occurring with DEKM vs. diphenyl-
ketene, which is dimerized by complex I forming a metallacycle 
of structure B.10 

A second example of reductive coupling of unsaturated 
functional groups affording a C—C single bond is represented 
in reaction 4. A toluene solution of I reacts with p-TCD giving 
V." Complex V is rather insoluble, paramagnetic in the solid 

R R 

NU , I\I 
-4CO / C s 

2 cp 2 T, (CO) 2 + 2 R-N = C = N - R • Cp2T I TiCp2 <,,) 

N N 
O ) H V I . p - T C D J, |j 

R= D-CH C H, IV) 

state (1.74 t̂B per titanium at 293 K), and its IR spectrum does 
not show any significant band above 1600 cm - 1 (Nujol mull). 
Because of the paucity and the limited usefulness of spectro­
scopic data, an X-ray analysis was required to elucidate the 
nature of the product. A knowledge of its structure is the 
fundamental starting point for understanding the metal-in­
duced transformation undergone by IV. 

Crystal Data. C5 0H4 8N4Ti, (V): M = 800.8: triclinic; a = 
12.408(1), b= 10.449(1), c = 8.179 ( I ) A ; a = 103.56(1), 
/3 = 94.29 (1), 7 = 94.23 ( I ) 0 ; Z = 1;</Calcd = 1.299, c/obsd = 
1.31 g c m - 3 (flotation); space group P\. Intensity data were 
collected on an "on-line" single-crystal automated Siemens 
AED diffractometer using nickel-filtered Cu Ya radiation (X 
= 1.54178 A, 6° < 2 0 < 140°) at a takeoff angle of 6°. The 
pulse height discriminator was set to accept 90% of the Cu ka 
peak. For intensities and background the "five-point tech­
nique" '2 was used. A total of 3468 reflections were considered 
observed (/ > 2c(/)) and used in the structure determination 
and refinement. The structure was solved by heavy-atom 
method and refined by full-matrix least-squares techniques13 

with anisotropic thermal parameters. The final R index was 
0.061.14 

A view of the molecular structure of V is shown in Figure 
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Table I. Bond Distances (Angstrom) and Angles (Degrees) for 
[TiCp2CN2(C6H4CH3-P)2]: 

Ti-C(cp) 
Ti-cp ± 
C-C(Cp) 
C-C(Ph) 
cp(l)-Ti-cp(2) 

N(2)-Ti-N(l') 
Ti-N(2)-C(30) 
Ti-N(l')-C(30') 
N(2)-C(30)-C(30') 

2.414(13)" 
2.101 (4)" 
1.399(8)° 
1.389(4)" 

73.6(1) 
118.1 (1) 
117.7(1) 
114.0(2) 

131.6(2) 
Ti-N(I') 
Ti-N(2) 
N(l)-C(30) 
N(2)-C(30) 
C(30)-C(30' 
N(I)-C(Il) 
N(2)-C(21) 

2.407(11)" 
2.089(4)" 
1.376(14)" 
1.392(6)" 

2.176(2) 
2.173(2) 
1.328(2) 
1.333(3) 

) 1.504(6) 
1.421 (3) 
1.425(3) 

" Values related to crystallographically nonequivalent cyclopen-
tadienyl and phenyl groups. All the average values have been calcu­
lated using the formulae 

Om = V 

2 Wi 

— (2WjXi2ZIw, - Xn,
2) + =— 

N — 1 Zw,-
Wi = or1 

where x, are the individual observations and 07 are their standard 
deviations. 

1 and pertinent bond distances and bond angles are given in 
Table I. See the paragraph at the end of the paper regarding 
supplementary material. The compound consists of centro-
symmetric dimeric units, fcp2TiCN2(CeH4CH3-p)2]2- Cy-
clopentadienyl rings are rjs bonded to the titanium atoms in 
a bent arrangement. The bridging ligand, which results from 
the dimerization of twop-TCD, acts as a tetradentate ligand 
chelating two centrosymmetric titaniums through the four 
nitrogen atoms. The titanium atoms deviate by 0.34 A on the 
opposite sides of the perfect plane defined by N(2), C(30), 
C(30'), N(l ' ) , N(I) , and N(2') (' = x,y, z). The resulting C-C 
(1.504 (6) A) and C-N (1.328 (2) and 1.333 (3) A) distances 
in the coupled ligand require single and partial double-bond 
character, respectively. While bond angles around C(30) es­
sentially indicate a sp2 hybridization, N( 1) and N(2) deviate 
by -0 .05 and 0.04 A from the Ti ' -C(30)-C(l 1) and Ti-
C(30)-C(21) planes, respectively. 

The structural and magnetic results indicate that the product 
of the reductive coupling reaction may be considered as a 
7V,A",A"',7V"'-tetra-p-tolyloxalylamidine derivative with 
substantial bond derealization all over the two CN2 units. The 

R R 
I I 

/ -c ^ , 
CP,T 

N*S/ 

close relationship between this bridging ligand and the well-
known tetrathiolene group stems from the resemblance in their 
structural and electronic properties.15 

It is interesting to point out that, depending on the cumulene 
structure and/or on the nature of X, the reductive coupling of 
C = X bonds involves either a titanium(II) -*• titanium(IV) 
(reaction 3) or a Ti(II) -* Ti(III) (reaction 4) oxidation pro­
cess. Somewhat related and rare examples of reductive cou­
pling O f C = O and C = N functional groups affording C - C 
bond formation have been described to occur in the reaction 
between typical free-radical-like titanium(III) complexes, 
(CpTiCb)2

16 and (cp2TiR)17 with ketones and organic cya­
nides, respectively. 

The so far reported metal-promoted activation on DEKM2 

and carbodiimides is mainly limited to their a{s and 7r19 

coordination to a metal center. In a few cases, it was found that 

Figure 1. A view of the molecular structure of the dimer 
[Cp2TiCN2(C6H4CH3-P)2J2. 

yV,A"-dialkylcarbodiimides undergo a transformation into 
the dehydro-7V,Ar',Ar"-trialkylguanidino dianion, 
[RN=C(NR)2] 2 _ , being complexes by the metal and isonitrile 
(RNC).20 This metal-induced transformation, which resembles 
CO2

4 and RNCO disproportiontion,5'21 could require as a key 
intermediate step the dimerization of the carbodiimide, as it 
was observed for CO2 ,22 into a metallacycle of structure B. 
While we emphasize the uniqueness of these titanjum-induced 
transformations on DEKM andp-TCD, we point out that the 
mechanism by which two DEKM's or/?-TCD s are reductively 
coupled is presently unknown. This notwithstanding, both 
reactions 3 and 4 can be considered model reactions for the 
reductive coupling of CO2 to oxalic acid precursors. 
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M N D O Study of Tetra-ferf-butyltetrahedrane and 
Tetra-ferf-butylcyclobutadiene and of Their 
Thermal Interconversion 

Sir. 

Tetra-to-f-butyltetrahedrane (1) shows a surprising thermal 
stability and rearranges to tetra-ferf-butylcyclobutadiene (2) 
only at temperatures of 130 0 C and above.' In this communi­
cation, we report on a MNDO2 study of the structure, stability, 
and thermal interconversion of 1 and 2 and compare the results 
with those for unsubstituted tetrahedrane (3) and cyclobuta-
diene (4). 

The optimized geometries of 1 and 2 (see Table I) show 
some unusual features. 1 is predicted to be a chiral molecule 
with T symmetry,3 in analogy to other tetra-ferf-butyl sub­
stituted systems.4 Relative to the Tj conformation, each 
tert-buty\ group is twisted in the same direction by 14.2°, and 
each methyl group by 4.8°, thereby destroying the planes of 

0 = 104.0« 

Figure 1. Optimized C^ structure of the MNDO-CI0 transition state for 
the reaction 3 -» 4. 

Table I. Calculated Heats of Formation and Optimized 
Geometries0 

point group 
A//f, kcal mol-1 

A ( Q = Q ) , A 
R(C-CT), A 
R(C-C1), A 
/J(C-C 0 1) , A 
A(C-H) 1 A 
0 ( Q Q C ) , deg 
0(C1C111H), deg 

1* 

T 
81.2 

1.534 
1.501 
1.559 
1.108 
110.4 
111.7 

V 

D2 
74.5 
1.381 
1.557 
1.520 
1.556-1.564 
1.108 
110.8-112.6 
111.9 

3 

Td 

136.6 

1.520 

1.063 

4d 

D2h 
90.7 
1.357 
1.534 

1.071 

" R, bond lengths; 6, bond angles; 0, dihedral angles. Indices for 
carbon atoms; r, ring atom; t, tertiary atom in butyl group; m, atom 
in methyl group. * For dihedral angles, see text. c 0 (Q=Q—Q) , 
136.5°; 0 ( Q = Q - C r = C r ) , 17.9°; 0 ( Q — Q = Q - C 1 ) , 157.8°. 
<* 0 ( Q = Q - H ) , 138.1°. 

symmetry but preserving all of the rotation axes of the Tj point 
group. It should, however, be difficult to detect the chirality 
of 1 experimentally since the conformation with Tj symmetry 
is calculated to be only 2.6 kcal/mol above that with T sym­
metry which implies free internal rotation of the /erf-butyl 
groups. These MNDO results confirm previous empirical 
force-field calculations5 which also predict ground-state T 
symmetry and a low rotational barrier in 1. 

The cyclobutadiene ring in 2 is calculated to be nonplanar, 
with a dihedral angle of 17.9° for the two double bonds. This 
puckering increases the nonbonding distances between the 
ferf-butyl groups and thus stabilizes the system. When plan-
arity is enforced during the optimization, the resulting struc­
ture is 11.1 kcal/mol higher in energy than the nonplanar one. 
The MNDO structure of 2 thus differs from the X-ray struc­
ture of the related, but sterically less hindered, methyl tri-
rm-butyl[4]annulenecarboxylate which contains a planar 
cyclobutadiene ring.6 

At the optimized geometries, the energy difference between 
the tetrahedrane and cyclobutadiene system (see Table I) is 
predicted to decrease from 45.9 to 6.7 kcal/mol when replacing 
the four hydrogen atoms by four ferf-butyl groups. This shift 
of 39.2 kcal/mol7 is undoubtedly due to steric effects since the 
tert-buty\ groups occupy much more favorable positions in the 
tetrahedrane system. Based on previous experience,8 the 
MNDO heat of formation of 4 is expected to be too low; the 
magnitude of the steric effect is believed to be somewhat 
overestimated, but of a reasonable order of magnitude. 

The thermal rearrangement 3 — 4, and the C4H4 potential 
surface in general, has recently been investigated both by 
semiempirical9'10 and ab initio11_13 methods. Since the rear­
rangement is "forbidden" thermally and involves a H O M O / 
LUMO crossing, a minimal 2 X 2 configuration interaction 
treatment (CIo) is required for a correct description. The 
MNDO-CIo activation energy for this reaction is 15.2 kcal/ 
mol. The transition state corresponds to a bicyclobutanediyl 
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